Курсовик1
Корзина 0 0 руб.

Работаем круглосуточно

Доступные
способы
оплаты

Свыше
1 500+
товаров

Каталог товаров

Устройства переработки преобразования информации. Регистр. Регистр хранения на RS-триггерах

В наличии
5 руб. 100 руб.
Экономия: 95 руб. (-95%)

Скачать реферат за 5 рублей Устройства переработки преобразования информации. Регистр. Регистр хранения на RS-триггерах

После нажатия кнопки В Корзину нажмите корзину внизу экрана, в случае возникновения вопросов свяжитесь с администрацией заполнив форму

При оформлении заказа проверьте почту которую Вы ввели, так как на нее вам должно прийти письмо с вашим файлом


Оглавление

Введение........................................................................ 3

Регистры........................................................................ 4

Триггерные системы.................................................... 8

Заключение.................................................................. 12

Список литературы..................................................... 13


Введение

В отличие от комбинационных схем (КС) значения выходных сигналов последовательностных схем (ПС) в данный момент времени зависят не только от значений входных сигналов в этот же момент времени, но и от их предыдущих значений. Из этого следует, что ПС реализует функциональную связь уже не между отдельными значениями входных и выходных сигналов, а между их последовательностями. Поэтому, в отличии от КС, работу ПС следует рассматривать во времени.

Для того, чтобы значения выходных сигналов зависели от предыдущих значений входных, ПС должны обладать памятью, в которой сохраняется информация о предыдущих входных воздействиях. Эта информация используется в ПС в виде совокупности сигналов, вырабатываемых памятью.

Особое значение при изучении последовательностных схем имеют элементы памяти - триггеры.


Регистры

Назначение регистров - хранение и преобразование многоразрядных двоичных чисел.

Они используются в качестве управляющих и запоминающих устройств, генераторов и преобразователей кодов, счётчиков, делителей частоты, узлов временной задержки.

Регистры строят на синхронных D-триггерах или на RS(JK) - триггерах с динамическим или статическим управлением.

Одиночный триггер может запоминать (регистрировать) один разряд (бит) двоичной информации. Поэтому триггер можно считать одноразрядным регистром.

Занесение информации в регистр называют операцией ввода или записи. Запись информации в регистр не требует его предварительного обнуления.

Выдача информации к внешним устройствам характеризует операцию вывода или считывания.

В схемы регистров входят комбинационные элементы, роль которых вспомогательная: для выполнения операций “гашение” (Уст.0), “приём”, “вывода”, “преобразование” (из прямого кода в обратный и наоборот).

Регистры в зависимости от функциональных свойств бывают:

накопительные (регистры памяти, хранения);

сдвигающие.

Сдвигающие регистры делятся

по способу вводы и вывода информации на параллельные, последовательные и комбинационные (параллельно-последовательные и последовательно-параллельные);

по направлению передачи (сдвига) информации на однонаправленные и реверсивные.

Регистры памяти (накопительные, хранения)

Регистр для хранения n-разрядного слова может быть построен на синхронных RS-триггерах.

Функциональная схема регистра хранения

Рис.1 Функциональная схема регистра хранения.

В схеме регистра предусмотрены цепи, обеспечивающие выполнение дополнительных, вспомогательных микроопераций. Объединение входов R каждого триггера общей шиной образует шину гашения (Уст.0). Для установки триггера в состояние ноль необходимо падать одновременно сигналы соответствующие 1 по шине Уст.0 и шине С, объединяющей синхронизирующие входы триггеров.

Цепь параллельного приёма кода х1, х2,..., хn представлена конъюнкторами, выходы которых связаны с установочными входами S триггеров. Входы этих конъюнкторов объединены общей шиной П. Для осуществления операции “приём” предварительно регистры устанавливаются в состояние 0. После этого принимаемый код х1, х2,..., хn подаётся на входы конъюнкторов. Затем подаётся сигнал, соответствующий 1 по шинам П и С. В разрядах, где xi=1, происходит установка триггеров в единичное состояние. В разрядах, где xi=0, состояние триггеров не изменяется.

Операция “выдача” реализуется с помощью конъюнкторов, на входы которых поступают сигналы с прямых выходов триггеров. Вторые входы этих конъюнкторов объединены общей шиной выдачи В. Подавая сигнал 1 по шине В, получают на выходах конъюнкторов прямой код х1, х2,..., хn.

Операция “преобразование” осуществляется при подаче сигнала 1 по шине ПР, которая объединяет конъюнкторы, управляемые инверсными выходами триггеров, на выходе конъюнкторов при этом появляется обратный код

Схема парафазной передачи

Рис.2 Схема парафазной передачи

В регистрах используются также парафазный приём и выдача информации. При этом не требуется предварительной установки в 0 элемента хранения при выполнении приёма.

Для приёма необходимо подать сигнал 1 на шинах С1 и П. Чтобы триггер Ti осуществлял хранение кода, достаточно исключить подачу сигнала по шине П.

Использование парафазной передачи позволяет совместить выдачу кода с одного регистра с приёма кода в другой регистр. Для этого осуществляется коммутация выхода Qi триггера Ti со входом S триггера T'i и выхода i триггера Ti со входом R триггера T'i. Для парафазной передачи кода с триггера Ti на триггер T'i достаточно подать сигнал по шине С2.

Регистры сдвига

Сущность сдвига состоит в том, что с приходом каждого тактового импульса происходит перезапись (сдвиг) содержимого триггера каждого разряда в соседний разряд без изменения порядка следования единиц и нулей.

При сдвиге информации вправо после каждого тактового импульса бит из более старшего разряда сдвигается в младший, а при сдвиге влево - наоборот.

Регистры сдвига, помимо операции хранения, осуществляет преобразование последовательного двоичного кода в параллельный, а параллельного - в последовательный, выполняют арифметические и логические операции, служат в качестве цифровых элементов временной задержки.

Регистры сдвига строят на синхронных двухступенчатых RS-, JK-триггерах или на асинхронных JK-, D-триггерах с динамическим управлением записью. Внутренняя организация таких триггерных схем предусматривает разделение во времени этапов приёма входной информации и смены выходной. В них по переднему фронту синхронизирующего сигнала происходит приём информации, а по заднему - изменение состояния.

Рассмотрим работу четырёхразрядного регистра с последовательным вводом входной информации и сдвигом её вправо. В регистре применены RS(JK) - триггеры, а первый их них при помощи инвертора преобразован в D-триггер. Схема напоминает схему счётчика с параллельным переносом, но поскольку здесь применены не Т-триггеры, а RS(JK) - триггеры, то обеспечивается не счёт, а перенос (сдвиг) импульсов, поступающих на вход.

Допустим, что в регистр последовательно вводится, начиная с младшего разряда, двоичный код 1101, который поступает от внешнего устройства синхронно с тактовыми импульсами.

С первым тактовым импульсом в регистр DD1 будет записана единица младшего разряда. Со следующим тактовым импульсом эта единица будет сдвинута в триггер DD2 и окажется на его выходе. Одновременно в первый триггер поступит ноль (следующий разряд кода). Таким же образом будут происходить сдвиги с выхода Q2 на вход DD3 и с Q3 в DD4. После четырёх тактовых импульсов код на выходах Q4-Q1 будет соответствовать коду 1101 и может быть считан внешним устройством. Таким образом, регистр преобразует последовательный код в параллельный.

Четырёхразрядный сдвигающий регистр с последовательным вводом

Рис.3 Четырёхразрядный сдвигающий регистр с последовательным вводом.

После очередного тактового импульса (пятого) информационный сигнал, бывший на выходе последнего триггера, выводится из регистра и пропадает.

На выходе Q4 каждый сигнал появляется через четыре такта, считая с момента подачи его на вход. Это свойство регистра сдвига часто используют для задержки цифровой информации на заданное число тактовых периодов.

Триггерные системы

Триггер представляет, как правило, систему, состоящую из триггерной ячейки, играющей роль ячейки памяти (ЯП), и устройство управления (УУ):

Триггерная система

Рис.4 Триггерная система:

Q, - внешние выходы;

A, B - информационные (логические) входы;

V - подготовительный вход (предустановка);

С - тактовый вход;

S', R' - внутренние входы ячейки памяти;

Sa, Ra - внешние входы ячейки памяти.

Устройство управления - это комбинационное устройство, преобразующее входную информацию в комбинацию сигналов, под воздействием которых триггерная ячейка принимает одно из двух устойчивых состояний.

Изменяя схему устройства управления и способы связи её с триггерной ячейкой, можно получить триггеры с разными функциональными свойствами.

Асинхронный RS-триггер

У асинхронных триггеров имеются только информационные (логические) входы (т.е. отсутствует устройство управления). Они срабатывают непосредственно за изменением сигналов на входах. Триггерные ячейки на элементах И-НЕ либо ИЛИ-НЕ являются асинхронными RS-триггерами.

Синхронный RS-триггер

У синхронных триггеров смены сигналов на входах ещё недостаточно для срабатывания. Необходим дополнительный командный импульс, который подаётся на синхронизирующий (тактовый) вход. Это обеспечивается устройством управления, которое связывает каждый из информационных входов с тактовым логической операцией И. Поэтому информация с выводов S и R может быть передана на триггерную ячейку только при С=1:

Синхронный RS-триггер

Рис.5 Синхронный RS-триггер

Когда С=0, q1=q2=1, что является нейтральной комбинацией для триггерной ячейки, которая хранит записанную информацию, а состояние входов S и R безразлично. С приходом тактового импульса (С=1) триггер изменяет своё состояние или остаётся в прежнем в соответствии с входными сигналами S и R.

Входная комбинация S=R=1 недопустима, так как при С=1 создается недопустимое состояние на выходах Q==1.

Синхронный RS-триггер на элементах ИЛИ-НЕ:

Синхронный RS-триггер

Рис.6 Синхронный RS-триггер

Отличие состоит в способе управления: переброс триггера осуществляется сигналами S=0, R=0 при С=0, т.е. нулевыми логическими уровнями.

JK-триггер

В схемном отношении JK-триггеры отличаются от триггеров RS-типа наличием обратной связи с выходов на входы:

JK-триггер

Рис.7 JK-триггер.

Из схемы следует, что состояние JK-триггера зависит не только от сигналов на входах J и K, но и от логически связанных с ними сигналов и Q.

Функциональная особенность JK-триггера состоит в том, что при всех входных комбинациях, кроме одной J=K=1, он действует подобно RS-триггеру, причём вход J играет роль входа S, а К-вход соответствует R-входу.

При J=K=0 на выходах элементов 1 и 2 будет q1=q2=1 (независимо от значений сигналов Q и ), а что представляет нейтральную комбинацию для триггерной ячейки, которая хранит записанную ранее информацию. Когда JK, выходное состояние триггера будет определяться логическим элементом 1 или 2, на всех входа которого действует логическая 1.

Входная комбинация J=K=1 при любом состоянии триггера вызывает его переброс. Действительно, если Q=1, а =0, то q1=1, a q2=0 (так как K=Q=1). Сигнал q2=0 переключит триггерную ячейку. Переброс будет также иметь место при выходном состоянии Q=0, а =1. В этом случае окажется q1=0, q2=1 и триггерная ячейка опрокинется, принимая противоположное состояние Q=1, а =0.

Таким образом, подобно RS-триггеру, в JK-триггере J и К - это входы установки триггера в единицу или ноль. В отличии от RS-триггеров в JK-триггере наличие двух единичных управляющих сигналов (J=K=1) приводит к переходу триггера в противоположное состояние. Причём, начиная с момента опрокидывания триггера, управляющее действие сигналов на входах J и К прекращается, так как изменяются сигналы на выходах логических элементов 1 и 2 (q1, q2).

Заключение

В реферате было рассмотрено устройства переработки преобразования информации. Регистр. Регистр хранения на RS-триггерах., принципы их работы.

Рассмотрено типы и принцип работы триггеров как главных составляющих регистров.

Было детально рассмотрено регистры сдвига и, в частности, сдвиговые регистры на RS-триггерах.

Список литературы

1. Новиков Ю.В. Основы цифровой схемотехники. Базовые элементы и схемы. Методы проектирования. М.: Мир, 2011. - 379 с.

2. Новиков Ю.В., Скоробогатов П.К. Основы микропроцессорной техники. Курс лекций. М.: ИНТУИТ.РУ, 2013. - 440 с.

3. Пухальский Г.И., Новосельцева Т.Я. Цифровые устройства: Учеб. пособие для ВТУЗов. СПб.: Политехника, 2016. - 885 с.

4. Преснухин Л.Н., Воробьев Н.В., Шишкевич А.А. Расчет элементов цифровых устройств. М.: Высш. шк., 2011. - 526 с.

5. Букреев И.Н., Горячев В.И., Мансуров Б.М. Микроэлектронные схемы цифровых устройств. М.: Радио и связь, 2010. - 416 с.

6. Соломатин Н.М. Логические элементы ЭВМ. М.: Высш. шк., 2010. - 160 с.

Loading...

Последние статьи из блога

Судебные штрафы

​ Причины возникновения проблемных кредитов

Экономическое содержание банковского кредитования

Реализация информационной безопасности предприятий на основе специализированных программно-аппаратных комплексов

Задачи стратегической политики развития муниципального образования

Понятия, виды, этапы формирования организационной культуры

Формы и правовые основы франчайзинга в розничной торговле

Международные расчеты по экспортно-импортным операциям

Современная рекламная коммуникация как доминирующий фактор формирования потребительского сознания

Визуальный мерчандайзинг

Пожизненная рента

Анализ структуры и динамики средств пенсионной системы РФ 2024

Интеграция и причины кооперации предприятий в условиях рыночных трансформаций

Деятельность Росфинмониторинга

​Современная рекламная коммуникация как доминирующий фактор формирования потребительского сознания

Теоретические аспекты социализации младших школьников посредством игровой деятельности на уроках физической культуры

Право на социальное обеспечение в РОССИИ

Субъекты гражданского права

Солнечные затмения

Техника управления церковным хором