Введение........................................................................ 3
Сущность свойств бинарных отношений................... 4
Бинарные отношения и их графы............................. 12
Заключение.................................................................. 16
Список литературы..................................................... 17
Понятие множества является одним из основных понятий математики и поэтому не определяется через другие.
Математический смысл слова «множество» отличается от того, как оно используется в обычной речи, где его связывают с большим количеством предметов. В математике этого не требуется. Здесь рассматривают множество, состоящее из одного объекта, и множество, не содержащее ни одного объекта.
Математика как наука отражает мир взаимодействующих простых и сложных объектов (вещей, явлений, процессов). Абстрагируясь от реальности, математика рассматривает унарные, бинарные и другие отношения.
Бинарные отношения служат простым и удобным аппаратом для весьма широкого круга задач. Язык бинарных отношений используется во многих прикладных (для математики) областях, например, таких как математическая лингвистика, математическая биология, математическая теория баз данных. Широкое использование языка бинарных отношений легко объясняется – геометрический аспект теории бинарных отношений есть попросту теория графов.
Таким образом, актуальность проблемы изучения бинарных отношений обусловила тему исследования: «Исследование отображений и свойств бинарных отношений с помощью графов».
Множество - это неопределяемое понятие, что представляет некоторую совокупность данных. Элементы множества можно отличать друг от друга, а также определять, принадлежит ли данный элемент данному множеству. Над множествами можно выполнять операции объединения, пересечения, разности и дополнения.
Новые множества можно строить при помощи понятия декартового произведения (конечно, есть и другие способы, но они нас в данный момент не интересуют). Декартово произведение нескольких множеств - это множество кортежей, построенный из элементов этих множеств.
Отношение - это подмножество декартового произведения множеств. Отношения состоят из однотипных кортежей.
Отношения являются математическим аналогом понятия "таблица".
Отношения получили степень и мощностью. Степень отношения - это количество элементов в каждом кортеже отношения (аналог количества столбцов в таблице). Мощность отношения - это мощность множества кортежей отношения (аналог количества строк в таблице).
В математике чаще всего используют бинарные отношения. В теории баз данных основными являются отношения степени . В математике, как правило, отношения заданы на бесконечных множествах и имеют бесконечную мощность. В базах данных напротив, мощности отношений конечны (число хранимых строк в таблицах всегда конечно).